Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 2181, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38467620

RESUMO

Animal performance fundamentally influences behaviour, ecology, and evolution. It typically varies monotonously with size. A notable exception is maximum running speed; the fastest animals are of intermediate size. Here we show that this peculiar allometry results from the competition between two musculoskeletal constraints: the kinetic energy capacity, which dominates in small animals, and the work capacity, which reigns supreme in large animals. The ratio of both capacities defines the physiological similarity index Γ, a dimensionless number akin to the Reynolds number in fluid mechanics. The scaling of Γ indicates a transition from a dominance of muscle forces to a dominance of inertial forces as animals grow in size; its magnitude defines conditions of "dynamic similarity" that enable comparison and estimates of locomotor performance across extant and extinct animals; and the physical parameters that define it highlight opportunities for adaptations in musculoskeletal "design" that depart from the eternal null hypothesis of geometric similarity. The physiological similarity index challenges the Froude number as prevailing dynamic similarity condition, reveals that the differential growth of muscle and weight forces central to classic scaling theory is of secondary importance for the majority of terrestrial animals, and suggests avenues for comparative analyses of locomotor systems.


Assuntos
Corrida , Animais , Corrida/fisiologia , Músculos , Fenômenos Biomecânicos
2.
J Biomech ; 166: 112048, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38493577

RESUMO

Tendon xanthoma and altered mechanical properties have been demonstrated in people with familial hypercholesterolaemia. However, it is unclear whether mild, untreated hypercholesterolaemia alters musculotendinous mechanical properties and muscle architecture. We conducted a case-control study of adults aged 50 years and over, without lower limb injury or history of statin medication. Based on fasting low-density lipoprotein (LDL) cholesterol levels, 6 participants had borderline high LDL (>3.33 mmol/L) and 6 had optimal LDL cholesterol (<2.56 mmol/L). Using shear wave elastography, shear wave velocity (SWV) of the Achilles tendon and gastrocnemius medialis muscle (a proxy for stiffness), along with muscle fascicle length and pennation angle were measured under four passive tensile loads (0, 0.5, 1.0, 1.5 kg) applied via a pulley system. Differences between groups were found for tendon SWV but not muscle SWV, fascicle length or pennation angle. Participants with hypercholesterolaemia showed greater SWV (mean difference, 95 % CI: 2.4 m/s, 0.9 to 4.0, P = 0.024) compared to the control group across all loads. These findings suggest that adults with mild hypercholesterolaemia have increased tendon stiffness under low passive loads, while muscle was not affected. Future research is needed to confirm findings in a larger cohort and explore the impact of hypercholesterolaemia on tendon fatigue injury and tendinopathy.


Assuntos
Tendão do Calcâneo , Hipercolesterolemia , Traumatismos dos Tendões , Adulto , Humanos , Pessoa de Meia-Idade , Idoso , Tendão do Calcâneo/fisiologia , Estudos de Casos e Controles , Ultrassonografia , Músculo Esquelético/fisiologia
3.
J Appl Biomech ; : 1-11, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38016463

RESUMO

Biomechanics as a discipline is ideally placed to increase awareness and participation of girls and women in science, technology, engineering, and mathematics. A nationwide Biomechanics and Research Innovation Challenge (BRInC) centered on mentoring and role modeling was developed to engage high school girls (mentees) and early-mid-career women (mentors) in the field of biomechanics through the completion of a 100-day research and/or innovation project. This manuscript describes the development, implementation, and uptake of the inaugural BRInC program and synthesizes the research and innovation projects undertaken, providing a framework for adoption of this program within the global biomechanics community. Eighty-seven high school girls in years 9 and 10 (age range: 14-16 y) were mentored in teams (n = 17) by women in biomechanics (n = 24). Using a design thinking approach, teams generated solutions to biomechanics-based problem(s)/research question(s). Eight key reflections on program strengths, as well as areas for improvement and planned changes for future iterations of the BRInC program, are outlined. These key reflections highlight the innovation, impact, and scalability of the program; the importance of a program framework and effective communication tools; and implementation of strategies to sustain the program as well as the importance of diversity and building a sense of community.

4.
J Biomech ; 159: 111775, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37672852

RESUMO

Spring-based passive ankle exoskeletons have been designed to emulate the energy conservation and power amplification roles of biological muscle-tendon units during locomotion. Yet, it remains unknown if similar assistive devices can serve the other elastomechanical role of biological muscle-tendon units - power attenuation. Here we explored the effect of bilateral passive ankle exoskeletons on neuromuscular control and muscle fascicle dynamics in the ankle plantarflexors during rapid, unexpected vertical perturbations. We recorded muscle activation and soleus fascicle length changes during hopping with and without exoskeleton assistance (0 and 76 Nm rad-1) on elevated platforms (20 cm), which were removed at an unknown time. Our results demonstrate that exoskeleton assistance leads to a reduction in soleus muscle activation, increases in fascicle length change and decreases in muscle forces during perturbed hopping. These changes have competing effects on the mechanics and energetics of lower limb muscles, likely limiting the capacity for series elastic tissues to absorb energy. As we strive towards the design of wearable assistive devices for everyday locomotion, information regarding real-time muscle-tendon behavior may enable tunable assistance that adapts to both the user and the environment.


Assuntos
Tornozelo , Exoesqueleto Energizado , Tornozelo/fisiologia , Caminhada/fisiologia , Fenômenos Biomecânicos/fisiologia , Metabolismo Energético/fisiologia , Músculo Esquelético/fisiologia , Articulação do Tornozelo/fisiologia , Locomoção
6.
J Biomech ; 157: 111709, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37437458

RESUMO

Over the past 50 years our understanding of the central role that muscle motion has in powering movement has accelerated significantly. Fundamental to this progress has been the development of methods for measuring the length of muscles and muscle fibers in vivo. A measurement of muscle fiber length might seem a trivial piece of information on its own. Yet when combined with knowledge of the properties of skeletal muscle it has proven a powerful tool for understanding the mechanics and energetics of locomotion and informing models of motor control. In this perspective we showcase the value of direct measurements of muscle fiber length from four different techniques: sonomicrometry, fluoromicrometry, magnetomicrometry, and ultrasound. For each method, we review its history and provide a high-level user's guide for researchers choosing tools for measuring muscle length in vivo. We highlight key insights that these measurements have provided, including the importance of passive elastic mechanisms and how skeletal muscle properties govern locomotor performance. The diversity of locomotor behaviors revealed across comparative studies has provided an important tool for discovering the rules for muscle function that span vertebrate locomotion more broadly, including in humans.


Assuntos
Contração Muscular , Músculo Esquelético , Humanos , Contração Muscular/fisiologia , Músculo Esquelético/fisiologia , Locomoção/fisiologia , Fibras Musculares Esqueléticas , Movimento (Física)
7.
J Appl Physiol (1985) ; 135(2): 394-404, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37348010

RESUMO

We aimed to determine whether the neural control of the biarticular gastrocnemius medialis (GM) and lateralis (GL) muscles is joint-specific, that is, whether their control differs between isolated knee flexion and ankle plantar flexion tasks. Twenty-one male participants performed isometric knee flexion and ankle plantar flexion tasks while we recorded high-density surface electromyography (HDsEMG). First, we estimated the distribution of activation both within- and between muscles using two complementary approaches: surface EMG amplitude and motor unit activity identified from HDsEMG decomposition. Second, we estimated the level of common synaptic input between GM and GL motor units using a coherence analysis. The distribution of EMG amplitude between GM and GL was not different between tasks, which was confirmed by the analysis of motor units' discharge rate. Even though there was a significant proximal shift in GM and GL EMG amplitude during knee flexion compared with ankle plantar flexion, the magnitude of this shift was small and not confirmed via the inspection of the spatial distribution of motor unit action potentials. A significant coherence between GM and GL motor units was only observed for four (knee flexion) and three (ankle plantar flexion) participants, with no difference in the level of coherence between the two tasks. We were able to track only a few motor units across tasks, which raises the question as to whether the same motor units were activated across tasks. Our results suggest that the neural control of the GM and GL muscles is similar across their two main functions.NEW & NOTEWORTHY Several studies have focused on the neural strategies used to control the gastrocnemius medialis (GM) and lateralis (GL) during plantar flexion. However, their secondary function, i.e., knee flexion, is not often explored. We observed a robustness of the GM and GL activation strategy across tasks, which was confirmed with an analysis of the motor unit discharge characteristics. The level of common synaptic input between GM and GL motor units was low, regardless of the task.


Assuntos
Tornozelo , Fenômenos Fisiológicos Musculoesqueléticos , Humanos , Masculino , Músculo Esquelético/fisiologia , Eletromiografia/métodos , Articulação do Tornozelo/fisiologia , Contração Isométrica/fisiologia
8.
J Appl Physiol (1985) ; 134(6): 1520-1529, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37167262

RESUMO

Skeletal muscles bulge when they contract. These three-dimensional shape changes, coupled with fiber rotation, influence a muscle's mechanical performance by uncoupling fiber velocity from muscle belly velocity (i.e., gearing). Muscle shape change and gearing are likely mediated by the interaction between internal muscle properties and contractile forces. Muscles with greater stiffness and intermuscular fat, due to aging or disuse, may limit a muscle's ability to bulge in width, subsequently causing higher gearing. The aim of this study was to determine the influence of internal muscle properties on shape change, fiber rotation, and gearing in the medial (MG) and lateral gastrocnemii (LG) during isometric plantar flexion contractions. Multimodal imaging techniques were used to measure muscle shear modulus, intramuscular fat, and fat-corrected physiological cross-sectional area (PCSA) at rest, as well as synchronous muscle architecture changes during submaximal and maximal contractions in the MG and LG of 20 young (24 ± 3 yr) and 13 older (70 ± 4 yr) participants. Fat-corrected PCSA was positively associated with fiber rotation, gearing, and changes in thickness during submaximal contractions, but it was negatively associated with changes in thickness at maximal contractions. Muscle stiffness and intramuscular fat were related to muscle bulging and reduced fiber rotation, respectively, but only at high forces. Furthermore, the MG and LG had varied internal muscle properties, which may relate to the differing shape changes, fiber rotations, and gearing behaviors observed at each contraction level. These results indicate that internal muscle properties may play an important role in mediating in vivo muscle shape change and gearing, especially during high-force contractions.NEW & NOTEWORTHY Here, we measured internal muscle properties in vivo to determine their influence on the varying shape change and gearing behaviors in the synergistic gastrocnemii muscles. These relationships have previously only been hypothesized or examined within isolated muscles during supramaximal contractions. Our results contribute to a more comprehensive understanding of the factors that influence a muscle's mechanical response to force with implications for preventing or treating muscle deficits associated with aging, disease, and disuse.


Assuntos
Contração Muscular , Músculo Esquelético , Humanos , Músculo Esquelético/fisiologia , Contração Muscular/fisiologia , Fenômenos Mecânicos , Contração Isométrica/fisiologia , Envelhecimento/fisiologia
9.
J Biomech ; 155: 111640, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37244210

RESUMO

Skeletal muscle is the engine that powers what is arguably the most essential and defining feature of human and animal life-locomotion. Muscles function to change length and produce force to enable movement, posture, and balance. Despite this seemingly simple role, skeletal muscle displays a variety of phenomena that still remain poorly understood. These phenomena are complex-the result of interactions between active and passive machinery, as well as mechanical, chemical and electrical processes. The emergence of imaging technologies over the past several decades has led to considerable discoveries regarding how skeletal muscles function in vivo where activation levels are submaximal, and the length and velocity of contracting muscle fibres are transient. However, our knowledge of the mechanisms of muscle behaviour during everyday human movements remains far from complete. In this review, we discuss the principal advancements in imaging technology that have led to discoveries to improve our understanding of in vivo muscle function over the past 50 years. We highlight the knowledge that has emerged from the development and application of various techniques, including ultrasound imaging, magnetic resonance imaging, and elastography to characterise muscle design and mechanical properties. We emphasize that our inability to measure the forces produced by skeletal muscles still poses a significant challenge, and that future developments to accurately and reliably measure individual muscle forces will promote newfrontiers in biomechanics, physiology, motor control, and robotics. Finally, we identify critical gaps in our knowledge and future challenges that we hope can be solved as a biomechanics community in the next 50 years.


Assuntos
Fibras Musculares Esqueléticas , Músculo Esquelético , Animais , Humanos , Músculo Esquelético/diagnóstico por imagem , Músculo Esquelético/fisiologia , Fibras Musculares Esqueléticas/fisiologia , Locomoção/fisiologia , Fenômenos Mecânicos , Fenômenos Biomecânicos , Contração Muscular/fisiologia
10.
J Exp Biol ; 226(7)2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-37021681

RESUMO

Among terrestrial mammals, the largest, the 3 tonne African elephant, is one-million times heavier than the smallest, the 3 g pygmy shrew. Body mass is the most obvious and arguably the most fundamental characteristic of an animal, impacting many important attributes of its life history and biology. Although evolution may guide animals to different sizes, shapes, energetic profiles or ecological niches, it is the laws of physics that limit biological processes and, in turn, affect how animals interact with their environment. Consideration of scaling helps us to understand why elephants are not merely scaled-up shrews, but rather have modified body proportions, posture and locomotor style to mitigate the consequences of their large size. Scaling offers a quantitative lens into how biological features vary compared with predictions based on physical laws. In this Review, we provide an introduction to scaling and its historical context, focusing on two fields that are strongly represented in experimental biology: physiology and biomechanics. We show how scaling has been used to explore metabolic energy use with changes in body size. We discuss the musculoskeletal and biomechanical adaptations that animals use to mitigate the consequences of size, and provide insights into the scaling of mechanical and energetic demands of animal locomotion. For each field, we discuss empirical measurements, fundamental scaling theories and the importance of considering phylogenetic relationships when performing scaling analyses. Finally, we provide forward-looking perspectives focused on improving our understanding of the diversity of form and function in relation to size.


Assuntos
Locomoção , Mamíferos , Animais , Fenômenos Biomecânicos , Filogenia , Locomoção/fisiologia , Tamanho Corporal , Mamíferos/fisiologia
11.
R Soc Open Sci ; 10(2): 221133, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36756059

RESUMO

Passive elastic ankle exoskeletons have been used to augment locomotor performance during walking, running and hopping. In this study, we aimed to determine how these passive devices influence lower limb joint and whole-body mechanical energetics to maintain stable upright hopping during rapid, unexpected perturbations. We recorded lower limb kinematics and kinetics while participants hopped with exoskeleton assistance (0, 76 and 91 Nm rad-1) on elevated platforms (15 and 20 cm) which were rapidly removed at an unknown time. Given that springs cannot generate nor dissipate energy, we hypothesized that passive ankle exoskeletons would reduce stability during an unexpected perturbation. Our results demonstrate that passive exoskeletons lead to a brief period of instability during unexpected perturbations - characterized by increased hop height. However, users rapidly stabilize via a distal-to-proximal redistribution of joint work such that the knee performs an increased energy dissipation role and stability is regained within one hop cycle. Together, these results demonstrate that despite the inability of elastic exoskeletons to directly dissipate mechanical energy, humans can still effectively dissipate the additional energy of a perturbation, regain stability and recover from a rapid unexpected vertical perturbation to maintain upright hopping.

12.
J Exp Biol ; 225(Suppl_1)2022 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-35258618

RESUMO

A considerable biomechanical challenge faces larger terrestrial animals as the demands of body support scale with body mass (Mb), while muscle force capacity is proportional to muscle cross-sectional area, which scales with Mb2/3. How muscles adjust to this challenge might be best understood by examining varanids, which vary by five orders of magnitude in size without substantial changes in posture or body proportions. Muscle mass, fascicle length and physiological cross-sectional area all scale with positive allometry, but it remains unclear, however, how muscles become larger in this clade. Do larger varanids have more muscle fibres, or does individual fibre cross-sectional area (fCSA) increase? It is also unknown if larger animals compensate by increasing the proportion of fast-twitch (higher glycogen concentration) fibres, which can produce higher force per unit area than slow-twitch fibres. We investigated muscle fibre area and glycogen concentration in hindlimb muscles from varanids ranging from 105 g to 40,000 g. We found that fCSA increased with modest positive scaling against body mass (Mb0.197) among all our samples, and ∝Mb0.278 among a subset of our data consisting of never-frozen samples only. The proportion of low-glycogen fibres decreased significantly in some muscles but not others. We compared our results with the scaling of fCSA in different groups. Considering species means, fCSA scaled more steeply in invertebrates (∝Mb0.575), fish (∝Mb0.347) and other reptiles (∝Mb0.308) compared with varanids (∝Mb0.267), which had a slightly higher scaling exponent than birds (∝Mb0.134) and mammals (∝Mb0.122). This suggests that, while fCSA generally increases with body size, the extent of this scaling is taxon specific, and may relate to broad differences in locomotor function, metabolism and habitat between different clades.


Assuntos
Glicogênio , Lagartos , Animais , Tamanho Corporal , Membro Posterior , Mamíferos , Fibras Musculares Esqueléticas , Músculo Esquelético/fisiologia
13.
J Biomech ; 135: 111033, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35276511

RESUMO

The study of muscle coordination requires knowledge of the force produced by individual muscles, which can be estimated using Hill-type models. Predicted forces from Hill-type models are sensitive to the muscle's maximal force-generating capacity (Fmax), however, to our knowledge, no study has investigated the effect of different Fmax personalization methods on predicted muscle forces. The aim of this study was to determine the influence of two personalization methods on predicted force-sharing strategies between the human gastrocnemii during walking. Twelve participants performed a walking protocol where we estimated muscle activation using surface electromyography and fascicle length, velocity, and pennation angle using B-mode ultrasound to inform the Hill-type model. Fmax was determined using either a scaling method or experimental method. The scaling method used anthropometric scaling to determine both muscle volume and fiber length, which were used to estimate the Fmax of the gastrocnemius medialis and lateralis. The experimental method used muscle volume and fascicle length obtained from magnetic resonance imaging and diffusion tensor imaging, respectively. We found that the scaling and the experimental method predicted similar gastrocnemii force-sharing strategies at the group level (mean over the participants). However, substantial differences between methods in predicted force-sharing strategies was apparent for some participants revealing the limited ability of the scaling method to predict force-sharing strategies at the level of individual participants. Further personalization of muscle models using in vivo experimental data from imaging techniques is therefore likely important when using force predictions to inform the diagnosis and management of neurological and orthopedic conditions.


Assuntos
Imagem de Tensor de Difusão , Músculo Esquelético , Eletromiografia , Humanos , Contração Muscular/fisiologia , Músculo Esquelético/diagnóstico por imagem , Músculo Esquelético/fisiologia , Ultrassonografia , Caminhada/fisiologia
14.
J Anat ; 240(1): 131-144, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34411299

RESUMO

Assessment of regional muscle architecture is primarily done through the study of animals, human cadavers, or using b-mode ultrasound imaging. However, there remain several limitations to how well such measurements represent in vivo human whole muscle architecture. In this study, we developed an approach using diffusion tensor imaging and magnetic resonance imaging to quantify muscle fibre lengths in different muscle regions along a muscle's length and width. We first tested the between-day reliability of regional measurements of fibre lengths in the medial (MG) and lateral gastrocnemius (LG) and found good reliability for these measurements (intraclass correlation coefficient [ICC] = 0.79 and ICC = 0.84, respectively). We then applied this approach to a group of 32 participants including males (n = 18), females (n = 14), young (24 ± 4 years) and older (70 ± 2 years) adults. We assessed the differences in regional muscle fibre lengths between different muscle regions and between individuals. Additionally, we compared regional muscle fibre lengths between sexes, age groups, and muscles. We found substantial variability in fibre lengths between different regions within the same muscle and between the MG and the LG across individuals. At the group level, we found no difference in mean muscle fibre length between males and females, nor between young and older adults, or between the MG and the LG. The high variability in muscle fibre lengths between different regions within the same muscle, possibly expands the functional versatility of the muscle for different task requirements. The high variability between individuals supports the use of subject-specific measurements of muscle fibre lengths when evaluating muscle function.


Assuntos
Imagem de Tensor de Difusão , Músculo Esquelético , Animais , Imagem de Tensor de Difusão/métodos , Feminino , Imageamento por Ressonância Magnética , Masculino , Fibras Musculares Esqueléticas , Músculo Esquelético/diagnóstico por imagem , Músculo Esquelético/fisiologia , Reprodutibilidade dos Testes
15.
J Biomech ; 129: 110823, 2021 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-34736086

RESUMO

When muscles contract and change length, they also bulge in thickness and/or width. These shape changes extend the functional range of skeletal muscle by allowing individual muscle fibres to shorten at different velocities than the whole muscle. Age-related differences in muscle architecture and tissue properties influence how older muscles change shape and architecture during contractions, yet this remains unexplored in active older adults. The aim of this study was to quantify and compare in vivo muscle architecture and shape changes in the medial (MG) and lateral (LG) gastrocnemii of active younger and older adults during isometric plantarflexion contractions. Fifteen younger (21 ±â€¯2y) and 15 older (70 ±â€¯3y) participants performed contractions at 20%, 40%, 60%, 80%, and 100% of maximum voluntary contraction (MVC). B-mode ultrasound was used to measure fascicle length, pennation angle and muscle thickness in MG and LG. We found no influence of age on changes in normalized fascicle length and thickness, or absolute change in pennation angle during contractions. With increasing contraction level, MG and LG fascicle shortening (P < 0.001) and rotation (P < 0.001) increased. However, the change in muscle thickness increased at higher contraction levels in LG, and not MG. Similarly, increased changes in pennation angle were associated with increased muscle thickness in LG, but not MG at 80% and 100% MVC. These results suggest that (1) gastrocnemii shape changes are similar in active older and younger adults at matched levels of effort, and (2) the relationship between pennation angle and muscle thickness can differ between synergistics (LG and MG) and across contraction levels.


Assuntos
Contração Isométrica , Músculo Esquelético , Idoso , Humanos , Contração Muscular , Fibras Musculares Esqueléticas , Músculo Esquelético/diagnóstico por imagem , Rotação , Ultrassonografia
16.
Exp Gerontol ; 156: 111594, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34673171

RESUMO

With aging comes reductions in the quality and size of skeletal muscle. These changes influence the force-generating capacity of skeletal muscle and contribute to movement deficits that accompany aging. Although declines in strength remain a significant barrier to mobility in older adults, the association between age-related changes in muscle structure and function remain unresolved. In this study, we compared age-related differences in (i) muscle volume and architecture, (ii) the quantity and distribution of intramuscular fat, and (iii) muscle shear modulus (an index of stiffness) in the triceps surae in 21 younger (24.6 ± 4.3 years) and 15 older (70.4 ± 2.4 years) healthy adults. Additionally, we explored the relationship between muscle volume, architecture, intramuscular fat and ankle plantar flexion strength in young and older adults. Magnetic resonance imaging was used to determine muscle volume and intramuscular fat content. B-mode ultrasound was used to quantify muscle architecture, shear-wave elastography was used to measure shear modulus, and ankle strength was measured during maximal isometric plantar flexion contractions. We found that older adults displayed higher levels of intramuscular fat yet similar muscle volumes in the medial (MG) and lateral gastrocnemius (LG) and soleus, compared to younger adults. These age-related higher levels of intramuscular fat were associated with lower muscle shear modulus in the LG and MG. We also found that muscle physiological cross-sectional area (PCSA) that accounted for age-associated differences in intramuscular fat showed a modest increase in its association with ankle strength compared to PCSA that did not account for fat content. This highlights that skeletal muscle fat infiltration plays a role in age-related strength deficits, but does not fully explain the age-related loss in muscle strength, suggesting that other factors play a more significant role.


Assuntos
Contração Isométrica , Músculo Esquelético , Idoso , Articulação do Tornozelo/fisiologia , Humanos , Contração Isométrica/fisiologia , Perna (Membro) , Força Muscular/fisiologia , Músculo Esquelético/fisiologia
17.
J Exp Biol ; 224(12)2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-34096594

RESUMO

The functional difference between the medial gastrocnemius (MG) and lateral gastrocnemius (LG) during walking in humans has not yet been fully established. Although evidence highlights that the MG is activated more than the LG, the link with potential differences in mechanical behavior between these muscles remains unknown. In this study, we aimed to determine whether differences in activation between the MG and LG translate into different fascicle behavior during walking. Fifteen participants walked at their preferred speed under two conditions: 0% and 10% incline treadmill grade. We used surface electromyography and B-mode ultrasound to estimate muscle activation and fascicle dynamics in the MG and LG. We observed a higher normalized activation in the MG than in the LG during stance, which did not translate into greater MG normalized fascicle shortening. However, we observed significantly less normalized fascicle lengthening in the MG than in the LG during early stance, which matched with the timing of differences in activation between muscles. This resulted in more isometric behavior of the MG, which likely influences the muscle-tendon interaction and enhances the catapult-like mechanism in the MG compared with the LG. Nevertheless, this interplay between muscle activation and fascicle behavior, evident at the group level, was not observed at the individual level, as revealed by the lack of correlation between the MG-LG differences in activation and MG-LG differences in fascicle behavior. The MG and LG are often considered as equivalent muscles but the neuromechanical differences between them suggest that they may have distinct functional roles during locomotion.


Assuntos
Músculo Esquelético , Caminhada , Fenômenos Biomecânicos , Eletromiografia , Humanos , Contração Muscular , Tendões
18.
Proc Biol Sci ; 288(1947): 20210201, 2021 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-33726594

RESUMO

In our everyday lives, we negotiate complex and unpredictable environments. Yet, much of our knowledge regarding locomotion has come from studies conducted under steady-state conditions. We have previously shown that humans rely on the ankle joint to absorb energy and recover from perturbations; however, the muscle-tendon unit (MTU) behaviour and motor control strategies that accompany these joint-level responses are not yet understood. In this study, we determined how neuromuscular control and plantar flexor MTU dynamics are modulated to maintain stability during unexpected vertical perturbations. Participants performed steady-state hopping and, at an unknown time, we elicited an unexpected perturbation via rapid removal of a platform. In addition to kinematics and kinetics, we measured gastrocnemius and soleus muscle activations using electromyography and in vivo fascicle dynamics using B-mode ultrasound. Here, we show that an unexpected drop in ground height introduces an automatic phase shift in the timing of plantar flexor muscle activity relative to MTU length changes. This altered timing initiates a cascade of responses including increased MTU and fascicle length changes and increased muscle forces which, when taken together, enables the plantar flexors to effectively dissipate energy. Our results also show another mechanism, whereby increased co-activation of the plantar- and dorsiflexors enables shortening of the plantar flexor fascicles prior to ground contact. This co-activation improves the capacity of the plantar flexors to rapidly absorb energy upon ground contact, and may also aid in the avoidance of potentially damaging muscle strains. Our study provides novel insight into how humans alter their neural control to modulate in vivo muscle-tendon interaction dynamics in response to unexpected perturbations. These data provide essential insight to help guide design of lower-limb assistive devices that can perform within varied and unpredictable environments.


Assuntos
Músculo Esquelético , Tendões , Articulação do Tornozelo , Fenômenos Biomecânicos , Elasticidade , Eletromiografia , Humanos , Contração Muscular
19.
Biol Lett ; 17(2): 20200612, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33529545

RESUMO

Geometric scaling predicts a major challenge for legged, terrestrial locomotion. Locomotor support requirements scale identically with body mass (α M1), while force-generation capacity should scale α M2/3 as it depends on muscle cross-sectional area. Mammals compensate with more upright limb postures at larger sizes, but it remains unknown how sprawling tetrapods deal with this challenge. Varanid lizards are an ideal group to address this question because they cover an enormous body size range while maintaining a similar bent-limb posture and body proportions. This study reports the scaling of ground reaction forces and duty factor for varanid lizards ranging from 7 g to 37 kg. Impulses (force×time) (α M0.99-1.34) and peak forces (α M0.73-1.00) scaled higher than expected. Duty factor scaled α M0.04 and was higher for the hindlimb than the forelimb. The proportion of vertical impulse to total impulse increased with body size, and impulses decreased while peak forces increased with speed.


Assuntos
Lagartos , Animais , Fenômenos Biomecânicos , Membro Anterior , Membro Posterior , Locomoção
20.
J R Soc Interface ; 18(174): 20200765, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33402020

RESUMO

The nervous system is faced with numerous strategies for recruiting a large number of motor units within and among muscle synergists to produce and control body movement. This is challenging, considering multiple combinations of motor unit recruitment may result in the same movement. Yet vertebrates are capable of performing a wide range of movement tasks with different mechanical demands. In this study, we used an experimental human cycling paradigm and musculoskeletal simulations to test the theory that a strategy of prioritizing the minimization of the metabolic cost of muscle contraction, which improves mechanical efficiency, governs the recruitment of motor units within a muscle and the coordination among synergist muscles within the limb. Our results support our hypothesis, for which measured muscle activity and model-predicted muscle forces in soleus-the slower but stronger ankle plantarflexor-is favoured over the weaker but faster medial gastrocnemius (MG) to produce plantarflexor force to meet increased load demands. However, for faster-contracting speeds induced by faster-pedalling cadence, the faster MG is favoured. Similar recruitment patterns were observed for the slow and fast fibres within each muscle. By contrast, a commonly used modelling strategy that minimizes muscle excitations failed to predict force sharing and known physiological recruitment strategies, such as orderly motor unit recruitment. Our findings illustrate that this common strategy for recruiting motor units within muscles and coordination between muscles can explain the control of the plantarflexor muscles across a range of mechanical demands.


Assuntos
Tornozelo , Contração Muscular , Animais , Articulação do Tornozelo , Humanos , Músculo Esquelético , Recrutamento Neurofisiológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...